On Center Cycles in Grid Graphs
نویسندگان
چکیده
Finding “good” cycles in graphs is a problem of great interest in graph theory as well as in locational analysis. We show that the center and median problems are NP hard in general graphs. This result holds both for the variable cardinality case (i.e. all cycles of the graph are considered) and the fixed cardinality case (i.e. only cycles with a given cardinality p are feasible). Hence it is of interest to investigate special cases where the problem is solvable in polynomial time. In grid graphs, the variable cardinality case is, for instance, trivially solvable if the shape of the cycle can be chosen freely. If the shape is fixed to be a rectangle one can analyse rectangles in grid graphs with, in sequence, fixed dimension, fixed cardinality, and variable cardinality. In all cases a complete characterization of the optimal cycles and closed form expressions of the optimal objective values are given, yielding polynomial time algorithms for all cases of center rectangle problems. Finally, it is shown that center cycles can be chosen as rectangles for small cardinalities such that the center cycle problem in grid graphs is in these cases completely solved. ∗Department of Engineering Science, University of Auckland (on sabbatical leave from the University of Kaiserslautern) †Institut für Technound Wirtschaftsmathematik (ITWM), University of Kaiserslautern ‡The work of both authors was partially supported by a grant of the Deutsche Forschungsgemeinschaft (DFG)
منابع مشابه
On independent domination numbers of grid and toroidal grid directed graphs
A subset $S$ of vertex set $V(D)$ is an {em indpendent dominating set} of $D$ if $S$ is both an independent and a dominating set of $D$. The {em indpendent domination number}, $i(D)$ is the cardinality of the smallest independent dominating set of $D$. In this paper we calculate the independent domination number of the { em cartesian product} of two {em directed paths} $P_m$ and $P_n$ for arbi...
متن کاملUnit-length embedding of cycles and paths on grid graphs
Although there are very algorithms for embedding graphs on unbounded grids, only few results on embedding or drawing graphs on restricted grids has been published. In this work, we consider the problem of embedding paths and cycles on grid graphs. We give the necessary and sufficient conditions for the existence of cycles of given length k and paths of given length k between two given vertices ...
متن کاملHamiltonian Cycles in Solid Grid Graphs
A grid graph is a nite node-induced subgraph of the innnite two-dimensional integer grid. A solid grid graph is a grid graph without holes. For general grid graphs, the Hamiltonian cycle problem is known to be NP-complete. We give a polynomial-time algorithm for the Hamiltonian cycle problem in solid grid graphs, resolving a longstanding open question posed in IPS82]. In fact, our algorithm can...
متن کاملNon-Hamiltonian Holes in Grid Graphs
In this paper we extend general grid graphs to the grid graphs consist of polygons tiling on a plane, named polygonal grid graphs. With a cycle basis satisfied polygons tiling, we study the cyclic structure of Hamilton graphs. A Hamilton cycle can be expressed as a symmetric difference of a subset of cycles in the basis. From the combinatorial relations of vertices in the subset of cycles in th...
متن کامل0n removable cycles in graphs and digraphs
In this paper we define the removable cycle that, if $Im$ is a class of graphs, $Gin Im$, the cycle $C$ in $G$ is called removable if $G-E(C)in Im$. The removable cycles in Eulerian graphs have been studied. We characterize Eulerian graphs which contain two edge-disjoint removable cycles, and the necessary and sufficient conditions for Eulerian graph to have removable cycles h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Annals OR
دوره 122 شماره
صفحات -
تاریخ انتشار 2003